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Abstract

Chemical patents contain rich coreference and
bridging links, which are the target of this re-
search. Specially, we introduce a novel anno-
tation scheme, based on which we create the
ChEMU-Ref dataset from reaction description
snippets in English-language chemical patents.
We propose a neural approach to anaphora
resolution, which we show to achieve strong
results, especially when jointly trained over
coreference and bridging links.

1 Introduction

Chemical research has contributed greatly to
human society and wellbeing, including new
medicines and vaccines (Gwynne and Heabrer,
2015). Research is heavily reliant on knowledge of
existing chemical processes and methods of chemi-
cal synthesis, which are documented in chemical
research literature and chemical patents. Given
the rapid growth of both publications and patents
in chemistry, the need for automatic methods to
extract semi-structured knowledge from chemical
texts is becoming increasingly critical (Li et al.,
2016; Akhondi et al., 2019).

Anaphora resolution is a key component of com-
prehensive information extraction (Rösiger, 2019;
Poesio et al., 2016). In chemistry, different chem-
ical compounds are mixed and reacted together
in different ways to generate novel compounds,
and to understand the precise chemical process of-
ten involves both resolving anaphoric references
and understanding chemical changes/interactions a
given entity is involved in. For example, as seen in
Figure 1, while the final mention of mixture on line
3 and that on line 4 are both coreferent and chemi-
cally identical, in the case of mixture on line 2 and
the first mention of mixture on line 3, the chemical
composition is the same but a transformation has
taken place via the stir and cool actions.

Our aim in this paper is to both identify
anaphoric references in chemical patents, and de-
termine the chemical relation between each linked
pair of entities. We propose a domain-specific an-
notation framework based on five types of anaphora
relations combining coreference and bridging. We
then construct a dataset following this framework,
annotated by chemical experts who achieve high
inter-annotator agreement. We additionally extend
existing anaphora resolution methods to model
anaphora in chemical text, and compare both
component-wise and joint models for anaphora res-
olution. This dataset will be released as part of the
upcoming ChEMU 2021 shared task1 (He et al., to
appear).

Our contributions in this paper are as follows: (1)
we propose a novel annotation scheme for anaphora
resolution in chemical patents; (2) we develop a
novel anaphora-resolution dataset based on chem-
ical patents; and (3) we extend a general-purpose
coreference resolution method, and achieve strong
results via joint training over coreference and bridg-
ing with domain-specific fine-tuning.

2 Related Work

Anaphora occurs in two basic forms: coreference
and bridging. Coreference occurs when different
expressions in a text refer to the same entity in the
real world (Ng, 2017; Clark and Manning, 2015),
while bridging occurs between discrete entities that
are linked via lexical semantic, frame-based, or en-
cyclopedic relations (Asher and Lascarides, 1998;
Hou et al., 2018).

Most existing anaphora datasets focus only on
coreference, predominantly using generic rela-
tions (Pradhan et al., 2012; Ghaddar and Langlais,
2016a), but also using domain-specific relations for
knowledge-rich corpora such as biomedical litera-

1http://chemu.eng.unimelb.edu.au/

http://chemu.eng.unimelb.edu.au/
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Figure 1: Annotated snippet of anaphora resolution in the chemical patents. Different color of links represent
different anaphora relation types. Detailed anaphora relation definition can be seen Section 3.3.

ture (Nguyen et al., 2011; Cohen et al., 2017).
The CoNLL-2012 dataset (Pradhan et al., 2012)

is a general corpus consisting of texts from three
languages (English, Chinese, and Arabic). It is
annotated based on OntoNotes v5.0 (Weischedel
et al., 2013) and includes two types of corefer-
ence relations: IDENTITY, a symmetrical and
transitive relation; and APPOSITIVE, two noun
phrases that are adjacent and not linked by a cop-
ula. Coreference resolution is modelled as a clus-
tering task. The wikicoref corpus was constructed
with the same relations, over Wikipedia documents
(Ghaddar and Langlais, 2016a).

BioNLP-ST 2011 (Nguyen et al., 2011) is a
domain-specific coreference corpus over abstracts
from biomedical literature, focusing mainly on
gene–protein coreference, considering four rela-
tions: RELAT (relative pronouns or adjectives, e.g.
which), PRON (pronouns, e.g. they), DNP (def-
inite or demonstrative noun phrases marked with
the, this, etc.), and APPOS (apposition). Instead
of modelling coreference resolution as a cluster-
ing task, here the direction of coreference links is
preserved. As this corpus focuses on gene–protein
coreference, the range of coreference phenomena
is limited. The CRAFT-CR corpus (Cohen et al.,
2017) adds coreference relations to the Colorado
Richly Annotated Full Text (CRAFT) corpus (Bada
et al., 2012), following OntoNotes v5.0 with mi-
nor adaptions, and including discontinuous expres-
sions, domain-specific proper nouns, and a broad
range of mention types.

The definition of bridging is somewhat impre-
cise (Zeldes, 2017; Hou et al., 2018), and different

corpora have adopted different definitions. Based
on Rösiger et al. (2018), there are two types of
bridging: referential bridging, which can be treated
as a context-based relation; and lexical bridging,
which describes lexical-semantic relations such as
holonymy and meronymy. Poesio et al. (2008) in-
troduced the ARRAU corpus of general language
texts for bridging, which consists of news, dialogue,
and narrative text. In the corpus, entities are limited
to noun phrases, and most bridging pairs are lexical
relations, with only a small number of instances
of referential bridging. ISnotes (Hou et al., 2018)
includes 50 Wall Street Journal (WSJ) articles from
the OntoNotes corpus, and has both coreference
and bridging annotations, with most of the bridging
pairs being referential. BASHI (Rösiger, 2018a)
has both coreference and bridging annotations over
50 WSJ articles based on the OntoNotes v5.0 guide-
lines, with most bridging links once again being
referential. Rösiger (2016) developed a corpus
called SciCorp based on English scientific papers,
following the same annotation scheme as BASHI.

Due to limited dataset availability, most research
has modelled coreference resolution and bridg-
ing separately. There are two basic approaches
to coreference resolution. First is mention rank-
ing methods, which aim to score the coreferent
probability of mention pairs (Clark and Manning,
2015, 2016a,b; Wiseman et al., 2015, 2016), and
make the assumption that mentions have been pre-
identified, meaning they are heavily reliant on up-
stream mention detection methods. Second is span
ranking methods, which combine mention detec-
tion with coreference prediction (Lee et al., 2017,



1364

2018; Zhang et al., 2018; Grobol, 2019; Kantor
and Globerson, 2019), and tend to perform bet-
ter. Bridging methods can be grouped into: (1)
rule-based methods (Hou et al., 2014; Rösiger,
2018b; Rösiger et al., 2018); and (2) machine learn-
ing methods (Hou, 2018a,b, 2020; Yu and Poesio,
2020). Rule-based methods have been shown to
achieve competitive results on domain-specific cor-
pora, but equally to be domain brittle. Yu and
Poesio (2020) jointly trained a model for corefer-
ence resolution and bridging by adapting a span
ranking method for coreference (Lee et al., 2018;
Kantor and Globerson, 2019), achieving good per-
formance over various bridging corpora. However,
they evaluated their model only on bridging.

3 Annotation Scheme

In this section, we introduce our annotation guide-
lines for anaphora resolution in chemical patents.
The complete annotation guidelines are made avail-
able at Fang et al. (2021).

3.1 Corpus Selection
We build on the ChEMU corpus (Verspoor et al.,
2020) developed for the ChEMU 2020 shared task
(He et al., 2020). This corpus consists of ‘snip-
pets’ extracted from chemical patents, where each
snippet corresponds to a reaction description. It is
common that several snippets are extracted from
the same chemical patent.

3.2 Mention Type
We aim to capture anaphora in chemical patents,
with a focus on identifying chemical compounds
during the reaction process. Consistent with other
anaphora corpora (Pradhan et al., 2012; Cohen
et al., 2017; Ghaddar and Langlais, 2016b), only
mentions that are involved in referring relationships
(as defined in Section 3.3) and related to chemical
compounds are annotated. The mention types that
are considered for anaphora annotation are listed
below.

It should be noted that verbs (e.g. mix, purify,
distil) and descriptions that refer to events (e.g.
the same process, step 5) are not annotated in this
corpus.

Chemical Names: Chemical names are a crit-
ical component of chemical patents. We cap-
ture as atomic mentions the formal name of
chemical compounds, e.g. N-[4-(benzoxazol-2-yl)-
methoxyphenyl]-S-methyl-N’-phenyl-isothiourea or

2-Chloro-4-hydroxy-phenylboronic acid. Chemi-
cal names often include nested chemical compo-
nents, but for the purposes of our corpus, we con-
sider chemical names to be atomic and don’t an-
notate internal mentions. Hence 4-(benzoxazol-2-
yl)-methoxyphenyl and acid in the examples above
will not be annotated as mentions, as they are part
of larger chemical names.

Identifiers: In chemical patents, identifiers or la-
bels may also be used to represent chemical com-
pounds, in the form of uniquely-identifying se-
quences of numbers and letters such as 5i. These
can be abbreviations of longer expressions incor-
porating that identifier that occur earlier in the text,
such as chemical compound 5i, or may refer back to
an exact chemical name with that identifier. Thus,
the identifier is annotated as an atomic mention as
well.

Phrases and Noun Types: Apart from chemi-
cal names and identifiers, chemical compounds
are commonly presented as noun phrases (NPs).
An NP consists of a noun or pronoun, and pre-
modifiers; NPs are the most common type of com-
pound expressions in chemical patents. Here we
detail NPs that are related to compounds:
• Pronouns: In chemical patents, pronouns

(e.g. they or it) usually refer to a previously-
mentioned chemical compounds.
• Definite NPs: Commonly used to refer to

chemical compounds, e.g. the solvent, the title
compound, the mixture.

Furthermore, there are a few types of NPs that need
specific handling in chemical patents:
• Quantified NPs: Chemical compounds are

usually described with a quantity. NPs with
quantities are considered as atomic mentions
if the quantities are provided, e.g. 398.4 mg of
the compound 1.
• NPs with prepositions: Chemical NPs con-

nected with prepositions (e.g. in, with, of )
should be considered as a single mention. For
example, the appropriate amino derivative in
dry THF is a single mention.

NPs describing chemical equipment containing
a compound may also be relevant to anaphora reso-
lution. This generally occurs when the equipment
that contains the compound undergoes a process
that also affects the compound. Thus, mentions
such as the flask and the autoclave can also be
mentions if they are used to implicitly refer to a
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contained compound.
Unlike many annotation schemes, our annota-

tion allows discontinuous mentions. For exam-
ple, the underlined spans of the fragment 114 mg
of 4-((4aS,7aS)-6-benzyloctahydro-1-pyrrolo[3,4-
b]pyridine-1-yl)-7H-pyrrolo[2,3-d]pyrimidine was
obtained with a yield of about 99.1% are treated
as a single discontinuous mention. This introduces
further complexity into the task and helps to cap-
ture more comprehensive anaphora phenomena.

Relationship to ChEMU 2020 entities: Since
this dataset is built on the ChEMU 2020 corpus (He
et al., 2020), annotation of related chemical com-
pounds is available by leveraging existing entity an-
notations introduced for the ChEMU 2020 named
entity recognition (NER) task. However, there are
some differences in the definitions of entities for
the two tasks.

In the original ChEMU 2020 corpus, entity
annotations identify chemical compounds (i.e.
REACTION PRODUCT , STARTING MATERIAL,
REAGENT CATALYST , SOLVENT , and
OTHER COMPOUND), reaction conditions
(i.e. TIME, TEMPERATURE), quantity informa-
tion (i.e. YIELD PERCENT , YIELD OTHER), and
example labels (i.e. EXAMPLE LABEL). There
is overlap with our definition of mention for the
labels relating to chemical compounds. However,
in our annotation, chemical names are annotated
along with additional quantity information, as we
consider this information to be an integral part of
the chemical compound description. Furthermore,
the original entity annotations do not include
generic expressions that co-refer with chemical
compounds such as the mixture, the organic
layer, or the filtrate, and neither do they include
equipment descriptions.

3.3 Relation Types

Anaphora resolution subsumes both coreference
and bridging. In the context of chemical patents,
we define four sub-types of bridging, incorporating
generic and chemical knowledge.

A referring mention which cannot be interpreted
on its own, or an indirect mention, is called an
anaphor, and the mention which it refers back to
is called the antecedent. In relation annotation,
we preserve the direction of the anaphoric relation,
from the anaphor to the antecedent. Following
similar assumptions in recent work, we restrict an-
notations to cases where the antecedent appears

earlier in the text than the anaphor.

3.3.1 Coreference
Coreference is defined as expressions/mentions that
refer to the same entity (Ng, 2017; Clark and Man-
ning, 2015). In chemistry, identifying whether two
mentions refer to the same entity needs to consider
various chemical properties (e.g. temperature or
pH). As such, for two mentions to be coreferent,
they must share the same chemical properties. We
consider two different cases of coreference:
• Single Antecedents: the anaphor refers to a

single antecedent.
• Multiple Antecedents: the anaphor refers to

multiple antecedents, e.g. in cases where mul-
tiple antecedents are combined to form a sin-
gle mixture.

It is possible for there to be ambiguity as to
which mention of a given antecedent an anaphor
refers to (where the mention is repeated); in these
cases the closest mention is selected.

3.3.2 Bridging
As stated in Section 3.3.1, when we consider the
anaphora relations, we take the chemical properties
of the mention into consideration. Coreference is
insufficient to cover all instances of anaphora in
chemical patents, and bridging occurs frequently.
We define four bridging types:

TRANSFORMED: Links between chemical com-
pounds that are initially based on the same com-
ponents, but which have undergone a change in
condition, such as pH or temperature. Such cases
must be one-to-one relations (not one-to-many). As
shown in Figure 1, the mixture in line 2 and the
first-mentioned mixture in line 3 have the TRANS-
FORMED relation, as they have the same chemical
components but different chemical properties.

REACTION-ASSOCIATED: The relationship be-
tween a chemical compound and its immediate
source compounds is via a mixing process, where
the source compounds retain their original chem-
ical structure. This relation is one-to-many from
the anaphor to the source compounds (antecedents).
For example, the mixture in line 2 has REACTION-
ASSOCIATED links to three mentions on line 1 that
are combined to form it: (1) the solution of Com-
pound (4) (0.815 g, 1.30 mmol) in THF (4.9 ml);
(2) acetic acid (9.8 ml); and (3) water (4.9 ml)).

WORK-UP: Chemical compounds are used to
isolate or purify an associated output product, in a
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Train Dev Test

Snippets 148 27 45
Sentences 763 164 274

Tokens/Sentences 27.5 24.7 25.8

Mentions 2,284 430 736
Dis. Mentions 88 10 17

Coref. 421 88 124
Bridging 1,731 323 577

TR 85 17 29
RA 515 105 167
WU 1,063 172 364
CT 68 29 17

Table 1: Corpus annotation statistics. “Dis. Mentions”
means discontinuous mentions. “Coref.”, “TR”, “RA”,
“WU”, and “CT” denote COREFERENCE, TRANS-
FORMED, REACTION-ASSOCIATED, WORK-UP and
CONTAINED, respectively. “Bridging” is the total
across all bridging relations.

one-to-many relation, from the anaphor to the com-
pounds (antecedents) that are used for the work-up
process. As demonstrated in Figure 1, The com-
bined organic layer in line 5 comes from the ex-
traction of The mixture and ethyl acetate in line 4,
and they are hence annotated as WORK-UP.

CONTAINED: A chemical compound is con-
tained inside some equipment. It is a one-to-many
relation from the anaphor (equipment) to the com-
pounds (antecedents) that it contains. An example
of this is a flask and the solution of Compound (4)
(0.815 g, 1.30 mmol) in THF (4.9 ml) on line 1,
where the compound is contained in the flask.

4 Task definition

Anaphora resolution can be decomposed into a two-
step task: (1) mention detection; and (2) anaphora
relation detection.

For the evaluation of mention and relation de-
tection, we use precision, recall and F1. One issue
here is that, for coreference resolution, anaphors
can link to multiple antecedents. Many coreference
evaluation metrics (Moosavi and Strube, 2016; Re-
casens and Hovy, 2011; Luo, 2005) cannot deal
with this since they model coreference resolution
as a clustering task, where all related antecedents
and anaphors occur in one cluster, and assume a
given mention occurs in a unique cluster. Hence
we adopt the approach to evaluation of Kim et al.
(2012), scoring coreference from two perspectives:
(1) surface coreference; and (2) atom coreference.
Surface coreference considers whether the anaphor
refers to the closest previous antecedent(s). Atom

coreference considers whether the anaphor refers
to the correct antecedent(s). Atom coreference
links take the coreferent transitivity into considera-
tion and can be generated from surface coreference
links, which we use by default.

For the corpus annotation, we use the BRAT text
annotation tool.2 To date, 220 snippets have been
annotated by two chemical experts, a PhD candi-
date and a final year bachelor student in Chem-
istry. Four rounds of annotation training were com-
pleted prior to beginning official annotation. In
each round, the two annotators individually anno-
tated the same 10 snippets (different across each
round of annotation), and compared their anno-
tations; annotation guidelines were then refined
based on discussion. After several rounds of train-
ing, we achieved a high inner-annotator agreement
of Krippendorff’s α = 0.92 (Krippendorff, 2004)
at the mention level,3 and α = 0.84 for relations.
In total, 1,500 snippets will be annotated in the
final dataset that will be used in the ChEMU 2021
shared task.

The statistics of the current corpus, and
train/dev/test set splits that form the basis of our ex-
periments in this paper, are shown in Table 1. The
dev and test partitions were both double annotated
by the two expert annotators, with any disagree-
ments merged by an adjudicator.

5 Methodology

We propose a joint neural model for anaphora reso-
lution.4 Similar to Yu and Poesio (2020), our model
adopts an end-to-end neural conference resolution
(Lee et al., 2017, 2018), as outlined in Figure 2.

Assume the snippet has T tokens represented
as vector X = {x1, ..., xT }, consisting of fixed
pretrained word and character embeddings learned
from a convolution neural network (CNN).

For mention candidate detection, we follow the
assumption of Lee et al. (2018), considering con-
tinuous tokens as a potential span and computing
the span score (sm) for each possible span. Specif-
ically, span representation si is obtained by the
concatenation of output token representations (x∗i )
from a bidirectional LSTM (BiLSTM) (Hochreiter
and Schmidhuber, 1997), the syntactic head repre-
sentation (hi) obtained from an attention mecha-

2https://brat.nlplab.org/
3With the lowest agreement being α = 0.89 for corefer-

ence mentions.
4Code available at https://github.com/

biaoyanf/ChEMU-Ref

https://brat.nlplab.org/
https://github.com/biaoyanf/ChEMU-Ref
https://github.com/biaoyanf/ChEMU-Ref
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Figure 2: Joint training architecture.

nism (Bahdanau et al., 2015), and a feature vector
of the mention (φ(i)):

X∗ = BiLSTM(X)

αt = wα · FFNNα(x∗t )

ai,t =
exp(αt)∑END(i)

k=START(i) exp(αk)

hi =

END(i)∑
t=START(i)

ai,t · xt

si = [x∗START(i), x
∗
END(i), hi, φ(i)]

and the span score sm(i) is computed as:

sm(i) = ws · FFNNs(si)

where FFNN denotes a feed-forward neural net-
work, and START(i) and END(i) represent the start-
ing and ending token index for span i, respectively.
To reduce the number of spans considered, we use
a beam of λT candidate mention spans.

Inspired by Zhang et al. (2018), the mention loss
is defined as:

Lmention = −
λT∑
i=1

mi ∗ log(sigmoid(sm(i)))

+ (1−mi) ∗ log(1− sigmoid(sm(i)))

where:

mi =

{
0 span i /∈ GOLDm

1 span i ∈ GOLDm

GOLDm is the set of gold mentions that are in-
volved in anaphora relations.

For anaphoric relation detection, a span pair
embedding is obtained by the concatenation of
each span embedding (sm(i), sm(j)) and the
element-wise multiplication of the span embed-
dings (sm(i) ◦ sm(j)) and a feature vector (φ(i, j))
for span pair i and j:

si,j = [sm(i), sm(j), sm(i) ◦ sm(j), φ(i, j)]

As coreference and bridging are different, we
consider them separately.

For coreference resolution, we follow Lee et al.
(2018) in optimizing the marginal log-likelihood of
all correct antecedents for a given anaphor:

Lcoref = log

N∏
i=1

∑
ŷ∈Y (i)

⋂
GOLDc(i)

P (ŷ)

where N is the number of candidate mentions; and
Y (i) = {ε, 1, ..., i − 1} is the set of possible as-
signments for each yi, which ε represents a dummy
antecedent and the numbers represent the proceed-
ing spans. GOLDc(i) is the gold coreferent an-
tecedents that span i refers to. If span i doesn’t have
a coreferent antecedent, GOLDc(i) = ε. P (yi) is
obtained via softmax over the antecedent scores sc
for the corresponding anaphor:

sc(i, j) =

{
0 j = ε

wc · FFNNc(si,j) j 6= ε

For bridging resolution, as we have four rela-
tions, we model it as a multiclass classification task
for each span pair. We represent the bridging re-
lation as a one-hot representation and introduce
a new relation type NO-RELATION for span pairs
that do not have a bridging relation. The loss for
bridging is:

yb(i, j) = softmax(wb · FFNNb(si,j))

Lbridging = −
Kc∑
c=1

N∑
i=1

i∑
j=1

bi,j,c log(yb(i, j, c))

where Kc represents the number of bridging cate-
gories, yb(i, j, c) denotes the prediction of yb(i, j)
under category c, and:

bi,j,c =

{
0 span pair(i, j) /∈ GOLDb(c)
1 span pair(i, j) ∈ GOLDb(c)

where GOLDb(c) is the gold bridging relation un-
der category c.



1368

Relation Method PA RA FA PR RR FR

Coref. (Surface) coreference 84.9 50.0 62.9 73.7 41.9 53.4
joint train 89.4 45.8 60.5 81.7 40.6 54.2

Coref. (Atom) coreference 84.9 50.0 62.9 75.6 42.6 54.4
joint train 89.4 45.8 60.5 82.3 40.8 54.5

Bridging bridging 88.4 80.9 84.5 76.0 65.4 70.3
joint train 89.5 81.8 85.5 77.0 66.1 71.1

TR bridging 77.5 63.8 69.7 76.2 63.8 69.1
joint train 76.9 69.0 72.7 75.9 69.0 72.3

RA bridging 82.7 83.3 83.0 66.0 57.5 61.4
joint train 89.0 85.0 86.9 70.8 60.5 65.1

WU bridging 92.0 82.5 87.0 81.1 68.5 74.3
joint train 91.6 82.7 86.9 79.4 67.9 73.1

CT bridging 100.0 88.9 94.1 72.1 79.4 75.4
joint train 95.8 85.2 90.2 89.4 78.4 83.4

Overall joint train 89.5 70.6 78.9 77.5 61.6 68.6

Table 2: Anaphora resolution results over the test dataset (%). Models are trained for “coreference”, “bridging” or
“joint train” (both tasks jointly). Models were trained over 10,000 epochs, and averaged over 3 runs with different
random seeds. “FA” and “FR” denote the F1 score for anaphor and relation prediction, respectively.

The total loss is L = Lmention + Lref , where:

Lref =


Lcoref for coreference
Lbridging for bridging
Lcoref + Lbridging for joint training

6 Experiments

In this section, we detail our experiments. We
use similar hyperparameters to Lee et al. (2018).
Specifically, we use GloVe embeddings (Penning-
ton et al., 2014) with window size=2 for head word
embeddings. For BiLSTM, GloVe embeddings
with window size=10 and contextualized ELMo
word representations (Peters et al., 2018) are used.
Character embeddings are learned from a charac-
tor CNN with windows of 3, 4, and 5 characters,
each with 50 filters. For bridging prediction, the
feed-forward neural networks are composed of two
hidden layers with 150 dimensions and rectified
linear units (Nair and Hinton, 2010).

We separate the gold mentions into those for
coreference and bridging. For joint training, the
gold mentions are combined.

Table 2 presents the results. For coreference
evaluation, given that the results in Table 2 indicate
that the surface and atom coreference results are not
substantially different, we use surface coreference
as our primary evaluation metric in the remainder
of this paper. For bridging evaluation, we consider
the overall bridging result as our primary analysis.

Overall, the joint training configuration achieves
54.2% F1 score for coreference resolution and
71.1% F1 score for bridging, representing +0.8%

Relation Method FA FR

Coref.
coreference 62.9 53.4
- w/ oracle mentions 81.7 79.2

joint train 60.5 54.2
- w/ oracle mentions 79.5 74.9

Bridging
bridging 84.5 70.3
- w/ oracle mentions 91.9 83.3

joint train 85.5 71.1
- w/ oracle mentions 91.8 83.5

Overall joint train 78.9 68.6
- w/ oracle mentions 88.3 82.1

Table 3: Comparisons with providing oracle mention
during training; results on test dataset, using surface
scoring for coreference. “FA”= F1 for anaphor predic-
tion; “FR”= F1 for relation prediction.

and +1.2% F1 score absolute improvement over the
component-wise models. This indicates that joint
training improves the performance of both tasks.
Compared to bridging, the performance of anaphor
detection in coreference resolution is lower, partic-
ularly in terms of recall, possibly because the data
is sparser.

To investigate the contribution of each step (men-
tion detection vs. relation detection), we experi-
ment with providing oracle mentions during the
training process. Table 3 shows that the perfor-
mance of both tasks improves substantially with
gold mentions. We achieve 82.1% F1 score for
relation prediction result under joint training, with
+13.5% F1 absolute score improvement. That is,
further improvement at mention detection will im-
prove resolution results.
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Relation Method FA FR

Coref.
coreference 62.9 53.4
- w/ CHELMO 65.3 56.9

joint train 60.5 54.2
- w/ CHELMO 64.4 58.3

Bridging
bridging 84.5 70.3
- w/ CHELMO 87.8 74.8

joint train 85.5 71.1
- w/ CHELMO 88.7 75.6

Overall joint train 78.9 68.6
- w/ CHELMO 82.2 73.1

Table 4: Comparison of different pretrained embed-
dings; results over test dataset, using surface scoring for
coreference. “FA”= F1 for anaphor prediction; “FR”=
F1 for relation prediction.

To determine the importance of domain fine-
tuning, we also experiment with an ELMo model
pretrained on a 1 billion word chemical patent cor-
pus (Zhai et al., 2019), referred to as CHELMO. The
experimental results are provided in Table 4. With
CHELMO, the performance of anaphor detection and
relation detection improve by +3.3% and +4.5% ab-
solute F1 score, respectively.

We also plot model performance with increasing
amounts of training data in Figure 3. While the
model performance is starting to plateau, potential
gains could be attained with more annotated data.
The strong correlation between anaphor detection
and relation detection is also self-evident in the
graph.

To perform error analysis, we analysed the
model errors on the dev dataset. As detailed in
Table 1, the corpus contains discontinuous men-
tions. However, our proposed model only consid-
ers continuous spans, accounting for some of the
low recall.

For coreference resolution, errors can be at-
tributed to three primary phenomena:

1. Long-distance relations: as illustrated in Ta-
ble 5 Ex 1, the title compound (360 mg, 1.05
mmol, 32%) refers to a compound at the be-
ginning of the snippet; the model generally
fails to capture such long-distance relations.

2. Multiple antecedents: as discussed in Sec-
tion 3.3.1, an anaphor may have multiple an-
tecedents, however the models predict a single
antecedent for each anaphor.

3. Imbalance of coreference and bridging re-
lations: bridging is more prevalent than coref-

Figure 3: Joint training configuration performance on
test dataset over different % of training dataset.

Figure 4: Confusion matrix of bridging relation detec-
tion on dev dataset with joint training configuration

erence, meaning the model has more difficulty
with coreference.

For bridging, as shown in Table 2, the per-
formance suffers from low recall in anaphor de-
tection. Furthermore, the confusion matrix of
fine-grained bridging relations in Figure 4 shows
that the model achieves poor performance for
REACTION-ASSOCIATED and WORK-UP relation
prediction, both in terms of precision and recall.

We further investigated the over-prediction prob-
lem in bridging. As shown in Table 5 Ex 2,
the reaction mixture in line 3 has a RELATION-
ASSOCIATED link with The reaction mixture in line
2 and sodium borohydride (10 mg, 0.27 mmol).
The model overpredicts additional links to the two
additional compounds that are linked to the pre-
vious mention of The reaction mixture in line 2.
The WORK-UP relation in Ex 5 is similar: the
second-mentioned the organic layer links to the
first-mentioned the organic layer and magnesium
sulfate. The filtered material, chloroform and wa-
ter should be linked with the first-mentioned the
organic layer, but are linked to the second. Such
errors result from individual span-pair predictions,
making it hard to capture interactions between
anaphors. Evaluating the antecedents simultane-
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1
Step D: Ethyl 7-chloro-6-(difluoromethyl)-2-(trifluoromethyl)pyrazolo[1,5 -a]pyridine-3-carboxylate . ... Purification (FCC, SiO2, eluting with n-
hexane:dichloromethane (2:1)) afforded the title compound (360 mg, 1.05 mmol, 32%) .

2
... to a suspension of methyl 5-bromo-6-methoxypicolinate (20 mg, 0.079 mmol) (Ark Pharm) in ethanol (0.25 mL) was added
sodium borohydride (9.6 mg, 0.25 mmol) . The reaction mixture was then heated at 50oC. for 2.5 h. An additional portion of
sodium borohydride (10 mg, 0.27 mmol) was added, and the reaction mixture was heated at 50oC. for an additional 2 h...

3
... after 55.8 mg of 6-chloro-7-deazapurine and 191 mg of potassium carbonate were sequentially added into the reaction mixture ,
the reaction mixture was refluxed for about 36 hours and then cooled down at room temperature...

4
... In the same manner as in Synthesis Example 8 except for using 2.11 g of the intermediate 6 in place of the intermediate 21 and using
1.00 g of 4-bromobiphenyl in place of bromobenzene, 1.49 g (yield: 56%) of a white solid was obtained.,.

5
... The filtered material was extracted with chloroform and water , and then the organic layer was dried by using magnesium sulfate . Thereafter,
the organic layer was distilled under reduced pressure...

6
... acetonitrile (150 mL) was added under ultrasonic to get a large amount of with precipitate . After suck filtration, the filter cake was washed with
acetonitrile (20 mLx3) , dried in vacuum to obtain the title compound (1.52 g, 86.9 %) .

Table 5: Examples of anaphora phenomena from the dev dataset.

ously may address this.
There is room for improvement in our model’s

ability to model context. In Table 5 Ex 3, due to
the expression add into, the first-mentioned the
reaction mixture does not include the chemicals
mentioned prior, unlike the first mention of the
phrase in Ex 2.

There are several causes of false negatives:

1. Reaction description variation: Chemical
reactions are usually described step by step,
and our model performs well in this struc-
ture. However, only part of a reaction may be
described. Table 5 Ex 4 illustrates chemical
compounds that are listed without a process.

2. Abstract expressions: In Table 5 Ex 6, pre-
cipitate should have a WORK-UP relation with
acetonitrile (150 mL), and the title compound
... with the filter cake; these are missed due to
inadequate modelling of domain terminology.

7 Conclusion

We propose a novel annotation scheme for
anaphora resolution in chemical patents. For our
annotation, we incorporate generic and domain-
specific knowledge to define coreference and bridg-
ing specific to the chemical domain, based on
which we created the novel ChEMU-Ref dataset.
Our corpus analysis and inner-annotator agreement
show the complexity of the task, as well as the
high quality of annotation. We model anaphora
resolution as two sub-tasks, mention detection
and anaphora relation detection, and also propose
a joint training model, which outperforms the
separately-trained models. By incorporating em-
beddings pretrained on the chemical domain, we
found that domain knowledge boosts performance.

With detailed error analysis, we also identified di-
rections to further enhance performance.
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A Additional Experimental Results

In the following tables, we provide detailed experiment results described in the main paper.
Table 6 provides a full comparison of training with gold-standard oracle mentions per anaphora relation

on the test dataset.
Table 7 provides a full comparison of training with different pretrained embeddings per anaphora

relation on the test dataset.

Relation Method PA RA FA PR RR FR

Coref. (Surface) coreference 84.9 50.0 62.9 73.7 41.9 53.4
- w/ oracle mentions 86.0 78.1 81.7 84.8 74.5 79.2

joint train 89.4 45.8 60.5 81.7 40.6 54.2
- w/ oracle mentions 90.5 70.8 79.5 87.0 65.9 74.9

Coref. (Atom) coreference 84.9 50.0 62.9 75.6 42.6 54.4
- w/ oracle mentions 86.0 78.1 81.7 85.1 74.7 79.5

joint train 89.4 45.8 60.5 82.3 40.8 54.5
- w/ oracle mentions 90.5 70.8 79.5 88.7 66.3 75.9

Bridging bridging 88.4 80.9 84.5 76.0 65.4 70.3
- w/ oracle mentions 91.1 92.8 91.9 83.8 82.8 83.3

joint train 89.5 81.8 85.5 77.0 66.1 71.1
- w/ oracle mentions 91.3 92.4 91.8 82.8 84.3 83.5

TR bridging 77.5 63.8 69.7 76.2 63.8 69.1
- w/ oracle mentions 90.2 90.8 90.3 90.2 90.8 90.3

joint train 76.9 69.0 72.7 75.9 69.0 72.3
- w/ oracle mentions 91.5 86.2 88.6 90.6 86.2 88.1

RA bridging 82.7 83.3 83.0 66.0 57.5 61.4
- w/ oracle mentions 88.0 88.3 88.1 83.4 71.1 76.7

joint train 89.0 85.0 86.9 70.8 60.5 65.1
- w/ oracle mentions 85.4 93.9 89.4 78.0 76.6 77.3

WU bridging 92.0 82.5 87.0 81.1 68.5 74.3
- w/ oracle mentions 92.4 94.4 93.4 83.7 86.7 85.2

joint train 91.6 82.7 86.9 79.4 67.9 73.1
- w/ oracle mentions 93.7 92.6 93.1 85.2 86.9 86.0

CT bridging 100.0 88.9 94.1 72.1 79.4 75.4
- w/ oracle mentions 93.3 100.0 96.5 79.5 100.0 88.3

joint train 95.8 85.2 90.2 89.4 78.4 83.4
- w/ oracle mentions 90.6 100.0 94.9 71.9 100.0 83.3

Overall joint train 89.5 70.6 78.9 77.5 61.6 68.6
- w/ oracle mentions 91.1 85.7 88.3 83.4 81.0 82.1

Table 6: Test results with gold-standard mentions during training. Models trained for “coreference”, “bridging” or
“joint train” (both tasks jointly). Models trained over 10,000 epochs; averaged over 3 runs with different random
seeds. “FA” and “FR” denote the F1 score for anaphor and relation prediction, respectively.
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Relation Method PA RA FA PR RR FR

Coref. (Surface) coreference 84.9 50.0 62.9 73.7 41.9 53.4
- w/ CHELMO 86.5 52.5 65.3 76.9 45.2 56.9

joint train 89.4 45.8 60.5 81.7 40.6 54.2
- w/ CHELMO 87.2 51.1 64.4 80.6 45.7 58.3

Coref. (Atom) coreference 84.9 50.0 62.9 75.6 42.6 54.4
- w/ CHELMO 86.5 52.5 65.3 81.1 46.5 59.0

joint train 89.4 45.8 60.5 82.3 40.8 54.5
- w/ CHELMO 87.2 51.1 64.4 81.5 46.0 58.8

Bridging bridging 88.4 80.9 84.5 76.0 65.4 70.3
- w/ CHELMO 88.4 87.2 87.8 75.9 73.7 74.8

joint train 89.5 81.8 85.5 77.0 66.1 71.1
- w/ CHELMO 91.3 86.4 88.7 78.1 73.4 75.6

TR bridging 77.5 63.8 69.7 76.2 63.8 69.1
- w/ CHELMO 82.5 65.5 73.0 81.4 65.5 72.5

joint train 76.9 69.0 72.7 75.9 69.0 72.3
- w/ CHELMO 81.4 64.4 71.8 79.3 64.4 70.9

RA bridging 82.7 83.3 83.0 66.0 57.5 61.4
- w/ CHELMO 89.5 83.9 86.5 74.1 62.9 68.0

joint train 89.0 85.0 86.9 70.8 60.5 65.1
- w/ CHELMO 91.8 82.2 86.6 76.8 63.7 69.5

WU bridging 92.0 82.5 87.0 81.1 68.5 74.3
- w/ CHELMO 88.3 92.4 90.3 76.2 79.0 77.5

joint train 91.6 82.7 86.9 79.4 67.9 73.1
- w/ CHELMO 92.2 92.0 92.1 78.5 78.2 78.3

CT bridging 100.0 88.9 94.1 72.1 79.4 75.4
- w/ CHELMO 100.0 85.2 91.7 78.5 78.4 78.4

joint train 95.8 85.2 90.2 89.4 78.4 83.4
- w/ CHELMO 100.0 81.5 89.4 80.8 80.4 80.3

Overall joint train 89.5 70.6 78.9 77.5 61.6 68.6
- w/ CHELMO 90.4 75.3 82.2 78.4 68.5 73.1

Table 7: Results with different pretrained embeddings. “coreference”, “bridging” and “joint training” represent
models that are trained on the coreference resolution task, bridging task, and both tasks jointly, respectively. We
train the models over 10,000 epochs, and averages over 3 runs with different random seeds. “FA” and “FR” denote
the F1 score for anaphor and relation prediction, respectively.


